Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging.
نویسندگان
چکیده
CH3NH3PbI3 perovskite solar cells with a mesoporous TiO2 layer and spiro-MeOTAD as a hole transport layer (HTL) with three different CH3NH3I concentrations (0.032 M, 0.044 M and 0.063 M) were investigated. Strong variations in crystal size and morphology resulting in diversified cell efficiencies (9.2%, 16.9% and 12.3%, respectively) were observed. The physical origin of this behaviour was analysed by detailed characterization combining current-voltage curves with photo- and electroluminescence (PL and EL) imaging as well as light beam induced current measurements (LBIC). It was found that the most efficient cell shows the highest luminescence and the least efficient cell is most strongly limited by non-radiative recombination. Crystal size, morphology and distribution in the capping layer and in the porous scaffold strongly affect the non-radiative recombination. Moreover, the very non-uniform crystal structure with multiple facets, as evidenced by SEM images of the 0.032 M device, suggests the creation of a large number of grain boundaries and crystal dislocations. These defects give rise to increased trap-assisted non-radiative recombination as is confirmed by high-resolution μ-PL images. The different imaging techniques used in this study prove to be well-suited to spatially investigate and thus correlate the crystal morphology of the perovskite layer with the electrical and radiative properties of the solar cells and thus with their performance.
منابع مشابه
افزایش پایداری سلولهای خورشیدی با استفاده از لایههای جاذب پروسکایتی CH3NH3PbI3 آلاییده با برم
The CH3NH3PbI3 is one of the most widely used and famous lead halide perovskite absorber layer for using in perovskite solar cells. One of the ways to deal with the instability problem of this perovskite structure in environmental condition is bromide doping in this composition. In this work, the structural and optical properties of the bromide doped CH3NH3PbI3 absorber layers were studied as w...
متن کاملCH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition
Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI...
متن کاملFabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method
Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic o...
متن کاملFabrication and Characterization of CH3NH3PbI3-x-yBrxCly Perovskite Solar Cells
Fabrication and characterization of CH3NH3PbI3 ́x ́yBrxCly perovskite solar cells using mesoporous TiO2 as electron transporting layer and 2,21,7,71-tetrakis-(N,N-di-4-methoxypheny lamino)-9,91-spirobifluorene as a hole-transporting layer (HTL) were performed. The purpose of the present study is to investigate role of halogen doping using iodine (I), bromine (Br) and chlorine (Cl) compounds as do...
متن کاملبررسی اثر فازی آلومینا بر بلورینگی لایه پروسکایت در سلولهای خورشید پروسکایتی
Organic-inorganic perovskite (CH3NH3PbI3), due to an appropriate energy gap to absorb sunlight, is used as an absorbent layer in third generation solar cells. Crystallinity of light absorbing layer plays an important role in the performance of perovskite solar cells and substrate plays an important role on crystallinity of light absorbing layer. In superstructure solar cells, alumina (aluminum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 46 شماره
صفحات -
تاریخ انتشار 2015